Metric Spaces (Notes)

These are actually based on the lectures delivered by Prof. Muhammad Ashfaq (Ex HoD, Department of Mathematics, Government College Sargodha).
These notes are very helpful to prepare a section of paper mostly called Topology in MSc for
University of the Punjab and University of Sargodha. These are also helpful in BSc.

CONTENTS OR SUMMARY:

  • Metric Spaces and examples
  • Pseudometric and example
  • Distance between sets
  • Theorem: Let (X,d) be a metric space. Then for any x,yX,|d(x,A)d(y,A)|d(x,y).
  • Diameter of a set
  • Bounded Set
  • Theorem: The union of two bounded set is bounded.
  • Open Ball, closed ball, sphere and examples
  • Open Set
  • Theorem: An open ball in metric space X is open.
  • Limit point of a set
  • Closed Set
  • Theorem: A subset A of a metric space is closed if and only if its complement Ac is open.
  • Theorem: A closed ball is a closed set.
  • Theorem: Let (X,d) be a metric space and AX. If xX is a limit point of A. Then every open ball B(x;r) with centre x contain an infinite numbers of point of A.
  • Closure of a Set
  • Dense Set
  • Countable Set
  • Separable Space
  • Theorem: Let (X,d) be a metric space, AX is dense if and only if A has non-empty intersection with any open subset of X.
  • Neighbourhood of a Point
  • Interior Point
  • Continuity
  • Theorem: f:(X,d)(Y,d) is continuous at x0X if and only if f1(G) is open is X. wherever G is open in Y.
  • Convergence of Sequence
  • Theorem: If (xn) is converges then limit of (xn) is unique.
  • Theorem: (i) A convergent sequence is bounded. (ii) ii) If xnx and yny then d(xn,yn)d(x,y).
  • Cauchy Sequence
  • Theorem: A convergent sequence in a metric space (X,d) is Cauchy.
  • Subsequence
  • Theorem: (i) Let (xn) be a Cauchy sequence in (X,d), then (xn) converges to a point xX if and only if (xn) has a convergent subsequence (xnk) which converges to xX.
  • (ii) If (xn) converges to xX, then every subsequence (xnk) also converges to xX.
  • Theorem: Let (X,d) be a metric space and MX. (i) Then xM¯ if and only if there is a sequence (xn) in M such that xnx. (ii) If for any sequence (xn) in MxnxxM, then M is closed.
  • Complete Space
  • Subspace
  • Theorem: A subspace of a complete metric space (X,d) is complete if and only if Y is closed in X.
  • Nested Sequence
  • Theorem (Cantor’s Intersection Theorem): A metric space (X,d) is complete if and only if every nested sequence of non-empty closed subset of X, whose diameter tends to zero, has a non-empty intersection.
  • Complete Space (Examples)
  • Theorem: The real line is complete.
  • Theorem: The Euclidean space Rn is complete.
  • Theorem: The space l is complete.
  • Theorem: The space C of all convergent sequence of complex number is complete.
  • Theorem: The space lp,p1 is a real number, is complete.
  • Theorem: The space C[a, b] is complete.
  • Theorem: If (X,d1) and (Y,d2) are complete then X×Y is complete.
  • Theorem: f:(X,d)(Y,d) is continuous at x0X if and only if xnx implies f(xn)f(x0).
  • Rare (or nowhere dense in X)
  • Meager (or of the first category)
  • Non-meager (or of the second category)
  • Bair’s Category Theorem: If Xϕ is complete then it is non-meager in itself “OR” A complete metric space is of second category.

Comments