Topology: Short Questions and MCQs

We are going to add short questions and MCQs for Topology. This is a compulsory subject in MSc and BS Mathematics in most of the universities of Pakistan. This page will be updated periodically.
  1. Is it possible to construct a topology on every set?
  2. Give an example of open set in R with usual topology, which is not an open interval.
  3. Let X={a}. Then what are the differences between discrete topology, indiscreet topology and confinite topology on X?
  4. Let X be a non-empty finite set. Then what is the difference between discrete and cofinite toplogy on X.
  5. Let τ be a cofinite toplogy on N. Then write any three element of τ.
  6. Let (Z,τ) be a cofinite topological spaces.
    • Is N open in τ?
    • Is A={±100,±101,±102,} open in τ?
    • Is E={0,±2,±4,} open in τ?
    • Is set of prime open in τ?
    • Is B={1,2,3,,99} closed in τ?
    • Is C={1010+n:nZ} open in τ?
  7. Write the closure of the set S={1+1n:nN} in usual topology on R.
  8. What is the closure of the set T={1,2,3,4,5}(6,7)(7,8] in usual topology on R?
  9. What is the closure of the set U={101,102,103,,200} in a cofinite toplogy constructed on Q?
  1. If τ1 and τ2 are two typologies on non-empty set X, then ………………. is topological space.
    • (A) τ1τ2
    • (B) τ1τ2
    • (C) τ1τ2
    • (D) τ2τ1
  2. If τ is typology on non-empty set X, then arbitrary ………………. of member of τ belong to τ.
    • (A) union
    • (B) intersection
    • (C) product
    • (D) compliment
  3. If τ is typology on non-empty set X, then arbitrary ………………. of member of τ belong to τ.
    • (A) union
    • (B) intersection
    • (C) product
    • (D) compliment

Comments